Premium
Gene expression analysis of BCR/ABL1‐dependent transcriptional response reveals enrichment for genes involved in negative feedback regulation
Author(s) -
Håkansson Petra,
Nilsson Björn,
Andersson Anna,
Lassen Carin,
Gullberg Urban,
Fioretos Thoas
Publication year - 2008
Publication title -
genes, chromosomes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.754
H-Index - 119
eISSN - 1098-2264
pISSN - 1045-2257
DOI - 10.1002/gcc.20528
Subject(s) - breakpoint cluster region , stat5 , biology , signal transduction , pim1 , cancer research , gene , philadelphia chromosome , abl , imatinib mesylate , microbiology and biotechnology , phosphorylation , genetics , imatinib , chromosomal translocation , tyrosine kinase , serine , myeloid leukemia
Philadelphia (Ph) chromosome-positive leukemia is characterized by the BCR/ABL1 fusion protein that affects a wide range of signal transduction pathways. The knowledge about its downstream target genes is, however, still quite limited. To identify novel BCR/ABL1-regulated genes we used global gene expression profiling of several Ph-positive and Ph-negative cell lines treated with imatinib. Following imatinib treatment, the Ph-positive cells showed decreased growth, viability, and reduced phosphorylation of BCR/ABL1 and STAT5. In total, 142 genes were identified as being dependent on BCR/ABL1-mediated signaling, mainly including genes involved in signal transduction, e.g. the JAK/STAT, MAPK, TGFB, and insulin signaling pathways, and in regulation of metabolism. Interestingly, BCR/ABL1 was found to activate several genes involved in negative feedback regulation (CISH, SOCS2, SOCS3, PIM1, DUSP6, and TNFAIP3), which may act to indirectly suppress the tumor promoting effects exerted by BCR/ABL1. In addition, several genes identified as deregulated upon BCR/ABL1 expression could be assigned to the TGFB and NFkB signaling pathways, as well as to reflect the metabolic adjustments needed for rapidly growing cells. Apart from providing important pathogenetic insights into BCR/ABL1-mediated leukemogenesis, the present study also provides a number of pathways/individual genes that may provide attractive targets for future development of targeted therapies. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.