z-logo
Premium
Prostate cancer cells use genetic and epigenetic mechanisms for progression to androgen independence
Author(s) -
Murillo Horacio,
Schmidt Lucy J.,
Karter Melissa,
Hafner Kari A.,
Kondo Yasushi,
Ballman Karla V.,
Vasmatzis George,
Jenkins Robert B.,
Tindall Donald J.
Publication year - 2006
Publication title -
genes, chromosomes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.754
H-Index - 119
eISSN - 1098-2264
pISSN - 1045-2257
DOI - 10.1002/gcc.20333
Subject(s) - epigenetics , lncap , biology , prostate cancer , cancer research , phenotype , tumor progression , androgen , microarray analysis techniques , dna methylation , gene expression , gene , cancer , genetics , endocrinology , hormone
Studies on the genetic basis of prostate cancer (PCa) have lead to mixed results with the only consensus being that PCa is a complex disease. Our goal was to gain insight into potential events involved in the acquisition of the androgen-refractory phenotype in PCa cells regardless of DNA-change dependence. To this end, we examined two LNCaP PCa cell line models of progression-one developed in vivo and one developed in vitro-using molecular cytogenetic and microarray gene expression analyses and extended this investigation of specific events into PCa tumors. The chromosomal changes observed in both in vivo and in vitro androgen-independent cell lines are similar to those seen in PCa during tumor progression. Correspondingly, gene expression analysis showed significant heterogeneity in the genes expressed among androgen-independent cells, but with some common gene expression changes that correlated with the acquired androgen-independent phenotype. Thus, growth conditions under which the cells progress appeared to impact the mechanisms used for progression, albeit within tumor-type-specific pathways. Our findings suggest that a dynamic and adaptable combination of epigenetic and DNA-change-dependent events can be used by PCa cells for the acquisition of the androgen-independent phenotype. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom