z-logo
Premium
Effect of TERT and ATM on gene expression profiles in human fibroblasts
Author(s) -
Baross Ágnes,
Schertzer Mike,
Zuyderduyn Scott D.,
Jones Steven J. M.,
Marra Marco A.,
Lansdorp Peter M.
Publication year - 2004
Publication title -
genes, chromosomes and cancer
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.754
H-Index - 119
eISSN - 1098-2264
pISSN - 1045-2257
DOI - 10.1002/gcc.20006
Subject(s) - telomere , biology , telomerase , gene , gene expression , senescence , genome instability , microbiology and biotechnology , serial analysis of gene expression , genetics , gene expression profiling , ataxia telangiectasia , dna damage , dna
Telomeres protect chromosomes from degradation, end-to-end fusion, and illegitimate recombination. Loss of telomeres may lead to cell death or senescence or may cause genomic instability, leading to tumor formation. Expression of human telomerase reverse transcriptase (TERT) in human fibroblast cells elongates their telomeres and extends their lifespan. Ataxia telangiectasia mutated (ATM) deficiency in A-T human fibroblasts results in accelerated telomere shortening, abnormal cell-cycle response to DNA damage, and early senescence. Gene expression profiling was performed by serial analysis of gene expression (SAGE) on BJ normal human skin fibroblasts, A-T cells, and BJ and A-T cells transduced with TERT cDNA and expressing telomerase activity. In the four SAGE libraries, 36,921 unique SAGE tags were detected. Pairwise comparisons between the libraries showed differential expression levels of 1%-8% of the tags. Transcripts affected by both TERT and ATM were identified according to expression patterns, making them good candidates for further studies of pathways affected by both TERT and ATM. These include MT2A, P4HB, LGALS1, CFL1, LDHA, S100A10, EIF3S8, RANBP9, and SEC63. These genes are involved in apoptosis or processes related to cell growth, and most have been found to be deregulated in cancer. Our results have provided further insight into the roles of TERT and ATM by identifying genes likely to be involved in their function. Supplementary material for this article can be found on the Genes, Chromosomes and Cancer website at http://www.interscience.wiley.com/jpages/1045-2257/suppmat/index.html.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here