z-logo
Premium
On the variation of regional CO 2 exchange over temperate and boreal North America
Author(s) -
Zhang Xia,
Gurney Kevin R.,
Peylin Philippe,
Chevallier Frédéric,
Law Rachel M.,
Patra Prabir K.,
Rayner Peter J.,
Röedenbeck Christian,
Krol Maarten
Publication year - 2013
Publication title -
global biogeochemical cycles
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.512
H-Index - 187
eISSN - 1944-9224
pISSN - 0886-6236
DOI - 10.1002/gbc.20091
Subject(s) - boreal , temperate climate , environmental science , taiga , climate change , precipitation , climatology , growing season , primary production , carbon fibers , atmospheric sciences , vegetation (pathology) , physical geography , ecosystem , geography , ecology , forestry , geology , biology , meteorology , medicine , materials science , pathology , composite number , composite material
Inverse‐estimated net carbon exchange time series spanning two decades for six North American regions are analyzed to examine long‐term trends and relationships to temperature and precipitation variations. Results reveal intensification of carbon uptake in eastern boreal North America (0.1 PgC/decade) and the Midwest United States (0.08 PgC/decade). Seasonal cross‐correlation analysis shows a significant relationship between net carbon exchange and temperature/precipitation anomalies during the western United States growing season with warmer, dryer conditions leading reduced carbon uptake. This relationship is consistent with “global change‐type drought” dynamics which drive increased vegetation mortality, increases in dry woody material, and increased wildfire occurrence. This finding supports the contention that future climate change may increase carbon loss in this region. Similarly, higher temperatures and reduced precipitation are accompanied by decreased net carbon uptake in the Midwestern United States toward the end of the growing season. Additionally, intensified net carbon uptake during the eastern boreal North America growing season is led by increased precipitation anomalies in the previous year, suggesting the influence of “climate memory” carried by regional snowmelt water. The two regions of boreal North America exhibit opposing seasonal carbon‐temperature relationships with the eastern half experiencing a net carbon loss with near coincident increases in temperature and the western half showing increased net carbon uptake. The carbon response in the boreal west region lags the temperature anomalies by roughly 6 months. This opposing carbon‐temperature relationship in boreal North America may be a combination of different dominant vegetation types, the amount and timing of snowfall, and temperature anomaly differences across boreal North America.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom