z-logo
Premium
Value at risk and conditional extreme value theory via markov regime switching models
Author(s) -
Samuel Yau Man Zeto
Publication year - 2008
Publication title -
journal of futures markets
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.88
H-Index - 55
eISSN - 1096-9934
pISSN - 0270-7314
DOI - 10.1002/fut.20293
Subject(s) - heteroscedasticity , extreme value theory , econometrics , autoregressive conditional heteroskedasticity , markov chain , volatility (finance) , normality , value at risk , stock market index , hang , economics , index (typography) , generalized pareto distribution , mathematics , statistics , stock market , computer science , risk management , geography , context (archaeology) , management , archaeology , world wide web , operating system
This study develops a new conditional extreme value theory‐based (EVT) model that incorporates the Markov regime switching process to forecast extreme risks in the stock markets. The study combines the Markov switching ARCH (SWARCH) model (which uses different sets of parameters for various states to cope with the structural changes for measuring the time‐varying volatility of the return distribution) with the EVT to model the tail distribution of the SWARCH processed residuals. The model is compared with unconditional EVT and conditional EVT‐GARCH models to estimate the extreme losses in three leading stock indices: S&P 500 Index, Hang Seng Index and Hang Seng China Enterprise Index. The study found that the EVT‐SWARCH model outperformed both the GARCH and SWARCH models in capturing the non‐normality and in providing accurate value‐at‐risk forecasts in the in‐sample and out‐sample tests. The EVTSWARCH model, which exhibits the features of measuring the volatility of a heteroscedastic financial return series and coping with the non‐normality owing to structural changes, can be an alternative measure of the tail risk. © 2008 Wiley Periodicals, Inc. Jrl Fut Mark 28:155–181, 2008

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here