Premium
Start‐Up of HT‐PEFC Systems Operating with Diesel and Kerosene for APU Applications
Author(s) -
Wiethege C.,
Samsun R. C.,
Peters R.,
Stolten D.
Publication year - 2014
Publication title -
fuel cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.485
H-Index - 69
eISSN - 1615-6854
pISSN - 1615-6846
DOI - 10.1002/fuce.201300166
Subject(s) - auxiliary power unit , combustor , process engineering , automotive engineering , diesel fuel , brake specific fuel consumption , kerosene , stack (abstract data type) , computer science , cold start (automotive) , fuel efficiency , environmental science , engineering , combustion , electrical engineering , chemistry , operating system , organic chemistry , voltage
Fuel‐cell‐based auxiliary power units offer power generation with reduced fuel consumption and low emissions. A very promising system is the combination of an autothermal reformer with a high‐temperature polymer electrolyte fuel cell. A fast start‐up procedure is a crucial requirement for the use of this system as an auxiliary power unit. This paper reports on the development of a suitable start‐up strategy for a 10 kW el auxiliary power unit with a start‐up burner. A commercially available diesel burner was tested as a start‐up device. A dynamic MATLAB/Simulink model was developed to analyze different start‐up strategies. With the currently available apparatus and start‐up burner it takes 2,260 s before power generation can begin according to simulation results. The fuel processor alone would be ready for operation after 1,000 s. An optimization of the fuel cell stack with regard to its thermal mass would lead to a start‐up time of 720 s. A reduction to 600 s is possible with a slight customization of the start‐up burner.