z-logo
Premium
Integration of Spin‐Coated Nanoparticulate‐Based La 0.6 Sr 0.4 CoO 3–δ Cathodes into Micro‐Solid Oxide Fuel Cell Membranes
Author(s) -
Evans A.,
Benel C.,
Darbandi A. J.,
Hahn H.,
Martynczuk J.,
Gauckler L. J.,
Prestat M.
Publication year - 2013
Publication title -
fuel cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.485
H-Index - 69
eISSN - 1615-6854
pISSN - 1615-6846
DOI - 10.1002/fuce.201300020
Subject(s) - materials science , electrolyte , cathode , solid oxide fuel cell , membrane , yttria stabilized zirconia , chemical engineering , oxide , anode , microstructure , open circuit voltage , spin coating , analytical chemistry (journal) , thin film , cubic zirconia , composite material , nanotechnology , ceramic , electrode , chemistry , metallurgy , chromatography , voltage , biochemistry , engineering , physics , quantum mechanics
Thin cathodes for micro‐solid oxide fuel cells (micro‐SOFCs) are fabricated by spin‐coating a suspension of La 0.6 Sr 0.4 CoO 3–δ (LSC) nanoparticulates obtained by salt‐assisted spray pyrolysis. The resulting 250 nm thin LSC layers exhibit a three‐dimensional porous microstructure with a grain size of around 45 nm and can be integrated onto free‐standing 3 mol.% yttria‐stabilized‐zirconia (3YSZ) electrolyte membranes with high survival rates. Weakly buckled micro‐SOFC membranes enable a homogeneous distribution of the LSC dispersion on the electrolyte, whereas the steep slopes of strongly buckled membranes do not allow for a perfect LSC coverage. A micro‐SOFC membrane consisting of an LSC cathode on a weakly buckled 3YSZ electrolyte and a sputtered Pt anode has an open‐circuit voltage of 1.05 V and delivers a maximum power density of 12 mW cm –2 at 500 °C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom