z-logo
Premium
Integration of Spin‐Coated Nanoparticulate‐Based La 0.6 Sr 0.4 CoO 3–δ Cathodes into Micro‐Solid Oxide Fuel Cell Membranes
Author(s) -
Evans A.,
Benel C.,
Darbandi A. J.,
Hahn H.,
Martynczuk J.,
Gauckler L. J.,
Prestat M.
Publication year - 2013
Publication title -
fuel cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.485
H-Index - 69
eISSN - 1615-6854
pISSN - 1615-6846
DOI - 10.1002/fuce.201300020
Subject(s) - materials science , electrolyte , cathode , solid oxide fuel cell , membrane , yttria stabilized zirconia , chemical engineering , oxide , anode , microstructure , open circuit voltage , spin coating , analytical chemistry (journal) , thin film , cubic zirconia , composite material , nanotechnology , ceramic , electrode , chemistry , metallurgy , chromatography , voltage , biochemistry , engineering , physics , quantum mechanics
Thin cathodes for micro‐solid oxide fuel cells (micro‐SOFCs) are fabricated by spin‐coating a suspension of La 0.6 Sr 0.4 CoO 3–δ (LSC) nanoparticulates obtained by salt‐assisted spray pyrolysis. The resulting 250 nm thin LSC layers exhibit a three‐dimensional porous microstructure with a grain size of around 45 nm and can be integrated onto free‐standing 3 mol.% yttria‐stabilized‐zirconia (3YSZ) electrolyte membranes with high survival rates. Weakly buckled micro‐SOFC membranes enable a homogeneous distribution of the LSC dispersion on the electrolyte, whereas the steep slopes of strongly buckled membranes do not allow for a perfect LSC coverage. A micro‐SOFC membrane consisting of an LSC cathode on a weakly buckled 3YSZ electrolyte and a sputtered Pt anode has an open‐circuit voltage of 1.05 V and delivers a maximum power density of 12 mW cm –2 at 500 °C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here