z-logo
Premium
Investigations of Compositions and Performance of PtRuMo/C Ternary Catalysts for Methanol Electrooxidation
Author(s) -
Wang ZhenBo,
Zuo PengJian,
Yin GePing
Publication year - 2009
Publication title -
fuel cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.485
H-Index - 69
eISSN - 1615-6854
pISSN - 1615-6846
DOI - 10.1002/fuce.200800096
Subject(s) - catalysis , ternary operation , electrochemistry , materials science , cyclic voltammetry , methanol , particle size , analytical chemistry (journal) , amperometry , inorganic chemistry , chemical engineering , electrode , chemistry , chromatography , organic chemistry , computer science , engineering , programming language
PtRuMo/C catalyst was prepared by impregnation reduction method and characterised. Comparison is made between a home‐made PtRu/C prepared by similar method and Pt/C (E‐Tek Co., Pt/C‐ET) catalysts. One glassy carbon disc electrode for ternary alloy catalyst was used to evaluate the catalytic performances by cyclic voltammetric, chronoamperometric, amperometric i –t curves, and electrochemical impedance spectra (EIS). The electrochemical measurement results indicated that the performance of PtRuMo/C with a molar ratio of 6:3:1 was the highest among 15 Pt x Ru y Mo 10– x – y /C catalysts with different molar ratios. The composition, particle size, lattice parameter and morphology of the PtRuMo(6:3:1)/C catalyst were determined by means of X‐ray energy dispersive analysis, X‐ray diffraction (XRD) and transmission electron micrographs (TEM). The result of XRD analysis exhibits that PtRuMo(6:3:1)/C has the fcc structure with the smaller lattice parameter than the home‐made PtRu/C and Pt/C‐ET. Its typical particle sizes is only about 5 nm. With respect to the catalytic activity and stability, the PtRuMo(6:3:1)/C catalyst is superior to PtRu/C despite their comparable active areas. Though the electrochemically active surface area of Pt/C‐ET is the biggest, its performance is the lowest. EIS results also indicate that the reaction resistances for methanol electrooxidation on the PtRuMo(6:3:1)/C catalyst are smaller than those of PtRu/C at different polarisation potentials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom