z-logo
open-access-imgOpen Access
Moisture sorption isotherm and changes in physico‐mechanical properties of films produced from waste flour and their application on preservation quality of fresh strawberry
Author(s) -
Muangrat Rattana,
Nuankham Chanida
Publication year - 2018
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.589
Subject(s) - potassium sorbate , sorption , plasticizer , moisture , ultimate tensile strength , chemistry , water activity , materials science , potassium , food science , water content , nuclear chemistry , composite material , adsorption , sugar , organic chemistry , engineering , geotechnical engineering
Waste flour from the noodle industry was used to produce films, which were plasticized with 40% w/w glycerol:sorbitol at 2:1, 3:1, and 4:1 w/w and formulated with 200 ppm potassium sorbate. Henderson's equation was found to be the best estimator for moisture sorption isotherm of the films stored at 5, 25, and 45°C, and then, equilibrated at 0.11, 0.23, 0.32, 0.43, 0.58, 0.64, 0.76, 0.84, and 0.93 water activity. Developed flour films (plasticized with 2:1 w/w glycerol:sorbitol/formulated with 20% w/w potassium sorbate), with the best mechanical properties (tensile strength of 1.05 MPa; elongation at break of 73.01%), were used to cover fresh strawberries on a polystyrene foam tray. It was found that higher average phenolic contents, antioxidant activity, and firmness were found in strawberries wrapped in plasticized/formulated films, when compared against both films without potassium sorbate and without film (control). Furthermore, a lower average total microorganism count was found for fresh strawberries wrapped in the plasticized/formulated films, when compared with films without potassium sorbate.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here