z-logo
open-access-imgOpen Access
Physiological effects of tangeretin and heptamethoxyflavone on obese C57BL/6J mice fed a high‐fat diet and analyses of the metabolites originating from these two polymethoxylated flavones
Author(s) -
Nery Marina,
Ferreira Paula S.,
Gonçalves Danielle R.,
Spolidorio Luis C.,
Manthey John A.,
Cesar Thais B.
Publication year - 2021
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.2167
Subject(s) - medicine , endocrinology , resistin , leptin , chemistry , flavones , obesity , insulin resistance , tbars , lipid peroxidation , adipocyte , adipose tissue , oxidative stress , adipokine , chromatography
Two compounds from citrus peel, tangeretin (TAN) and 3′,4′,3,5,6,7,8‐heptamethoxyflavone (HMF), were investigated for their abilities to repair metabolic damages caused by an high‐fat diet (HFD) in C57BL/6J mice. In the first 4 weeks, mice were fed either a standard diet (11% kcal from fat) for the control group, or a HFD (45% kcal from fat) to establish obesity in three experimental groups. In the following 4 weeks, two groups receiving the HFD were supplemented with either TAN or HMF at daily doses of 100 mg/kg body weight, while the two remaining groups continued to receive the standard healthy diet or the nonsupplemented HFD. Four weeks of supplementation with TAN and HMF resulted in intermediate levels of blood serum glucose, leptin, resistin, and insulin resistance compared with the healthy control and the nonsupplemented HFD groups. Blood serum peroxidation (TBARS) levels were significantly lower in the TAN and HMF groups compared with the nonsupplemented HFD group. Several differences occurred in the physiological effects of HMF versus TAN. TAN, but not HMF, reduced adipocyte size in the mice with pre‐existent obesity, while HMF, but not TAN, decreased fat accumulation in the liver and also significantly increased the levels of an anti‐inflammatory cytokine, IL‐10. In an analysis of the metabolites of TAN and HMF, several main classes occurred, including a new set of methylglucuronide conjugates. It is suggested that contrasts between the observed physiological effects of TAN and HMF may be attributable to the differences in numbers and chemical structures of TAN and HMF metabolites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom