
Conjugated linoleic acid loaded nanostructured lipid carrier as a potential antioxidant nanocarrier for food applications
Author(s) -
Hashemi Fatemeh Sadat,
Farzadnia Farin,
Aghajani Abdoreza,
Ahmadzadeh NobariAzar Farnaz,
Pezeshki Akram
Publication year - 2020
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.1712
Subject(s) - nanocarriers , conjugated linoleic acid , linoleic acid , dispersity , zeta potential , chemistry , nanoparticle , solid lipid nanoparticle , stearic acid , fatty acid , materials science , chemical engineering , nanotechnology , organic chemistry , engineering
The encapsulation of fatty acids in nanocarrier systems is a very effective technique in improving their biological efficiency and controlled delivery. Nanostructured lipid carrier (NLC) is a major type of lipid‐based nanoparticle. This study is focused on producing nanolipid carrier containing conjugated linoleic acid and fortifying low‐fat milk using this nanoparticle. Nanostructured lipid carriers were produced by hot high‐shear homogenization containing 1.5% Poloxamer 407, cocoa butter as solid lipid, and conjugated linoleic acid as liquid oil in ratio of 10:1. Results showed that the nanoparticles sized 81 nm with monomodular dispersity and the system was stable at 4 and 22°C for 40 days. Zeta potential and encapsulation efficiency (%EE) were −15.8 mV and 98.2%, respectively. Scanning electron microscopy (SEM) showed that the particles are in spiral form and small size and no significant aggregation was observed because of few changes in the system turbidity after storage time. The result of oxidative stability showed that using Nanostructured lipid carriers system resulted in lower malone dialdehyde production. Conjugated linoleic acid was protected at level of 3.9% of milk fatty acids in Nanostructured lipid carrier formulation during storage time. Based on these findings, Nanostructured lipid carriers system is an appropriate and stable nanocarrier system for delivery of nutraceuticals in foods and can be used in protecting them against oxidation, heating, and other processes in order to fortify foods and beverages.