
Delineating effect of corn microRNAs and matrix, ingested as whole food, on gut microbiota in a rodent model
Author(s) -
Huang Haiqiu,
Pham Quynhchi,
Davis Cindy D.,
Yu Liangli,
Wang Thomas T.Y.
Publication year - 2020
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.1672
Subject(s) - firmicutes , gut flora , biology , microrna , in silico , food science , genetically modified maize , cecum , bacteria , microbiology and biotechnology , genetics , biochemistry , 16s ribosomal rna , gene , ecology , genetically modified crops , transgene
Dietary microRNAs (miRNAs) are thought to regulate a wide range of biological processes, including the gut microbiota. However, it is difficult to separate specific effect(s) of miRNA from that of the food matrix. This study aims to elucidate the specific effect(s) of dietary corn miRNAs, ingested as a whole food, on the gut microbiota. We developed an autoclave procedure to remove 98% of miRNA from corn. A mouse feeding study was conducted comparing autoclaved corn to nonautoclaved corn and purified corn miRNA. Compared to nonspecific nucleotides and corn devoid of miRNAs, feeding purified corn miRNAs or corn to C57BL/6 mice via gavage or diet supplementation for two weeks lead to a decrease in total bacteria in the cecum. The effect appeared to be due to changes in Firmicutes . Additionally, corn matrix minus miRNA and processing also affected gut bacteria. In silico analysis identified corn miRNAs that aligned to Firmicutes genome sequences lending further support to the interaction between corn miRNAs and this bacterium. These data support interactions between plant food miRNA, as well as matrix, and the gut microbiota exist but complex. However, it provides additional support for mechanism by which bioactive dietary components interact with the gut microbiota.