z-logo
open-access-imgOpen Access
Antihyperglycemic effect of rice husk derived xylooligosaccharides in high‐fat diet and low‐dose streptozotocin‐induced type 2 diabetic rat model
Author(s) -
Khatudomkiri Nuntawat,
Toejing Parichart,
Sirilun Sasithorn,
Chaiyasut Chaiyavat,
Lailerd Narissara
Publication year - 2020
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.1327
Subject(s) - prebiotic , streptozotocin , metformin , chemistry , food science , insulin resistance , gut flora , functional food , type 2 diabetes , diabetes mellitus , glycemic index , glycemic , glut4 , endocrinology , biochemistry , medicine
Rice husk (RH) is an agricultural waste obtained from rice milling process. Our previous study demonstrated the optimized process of extracting xylooligosaccharides (XOS), a prebiotic that can support the growth and activity of beneficial gut microbiota, from RH. Accumulated evidences indicate that the composition of gut microbiota is involved in the progression of insulin resistance and diabetes. This study aims to evaluate the antihyperglycemic effect and putative mechanisms of RH‐XOS using a diabetic rat model induced by high‐fat diet and streptozotocin injection. Diabetic rats were randomly assigned to receive vehicle (DMC), XOS (DM‐XOS), metformin (DMM), and a combination of XOS and metformin (DMM‐XOS). An additional group of rats were fed with normal diet plus vehicle (NDC) and normal diet plus XOS (ND‐XOS). Supplementation with RH‐XOS for 12 weeks successfully decreased the fasting plasma glucose, insulin, leptin, and LPS levels in DM‐XOS compared with DMC. Likewise, the insulin‐stimulated glucose uptake assessed by in vitro study was significantly enhanced in DM‐XOS, DMM, and DMM‐XOS. The diminished protein expressions of GLUT4 and pAkt Ser473 as well as pAMPK Thr172 were significantly modulated in DM‐XOS, DMM, and DMM‐XOS groups. Interestingly, RH‐XOS supplementation reversed the changed gut permeability, elevated the number of beneficial bacteria, both Lactobacillus and Bifidobacterium spp., and increased SCFAs production. Taken together, the results confirm the efficacy of RH‐XOS in achieving good glycemic control in diabetes by maintenance of gut microbiota and attenuation of endotoxemia. The findings reveal the benefits of RH‐XOS and open an opportunity to improve its value by its development as a nutraceutical for diabetes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here