
Effect of storage temperature on lipid oxidation and changes in nutrient contents in peanuts
Author(s) -
Liu Kunlun,
Liu Ying,
Chen Fusheng
Publication year - 2019
Publication title -
food science and nutrition
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.614
H-Index - 27
ISSN - 2048-7177
DOI - 10.1002/fsn3.1069
Subject(s) - peroxide value , food science , chemistry , sugar , acid value , nutrient , lipid oxidation , fatty acid , moisture , malondialdehyde , composition (language) , reducing sugar , water content , peroxide , biochemistry , organic chemistry , oxidative stress , antioxidant , linguistics , philosophy , geotechnical engineering , engineering
Peanut, an important oil crop worldwide, is highly susceptible to oxidative damage during storage due to its high level of fats and unsaturated fatty acids which will affects its nutritional value and agricultural importance. Therefore, it is significantly important to research the physicochemical properties changes of peanuts during storage. Peanuts belong to two varieties were stored at various temperatures (15°C, 25°C, and 35°C) for 320 days. Peroxide value (PV), carbonyl value (CV), and malondialdehyde (MDA) content of oil extracted from peanuts were determined every 80 days to evaluate lipid oxidation degree. Proximate composition (fat, protein, total sugar, moisture, and ash), fatty acid, and amino acid compositions were also assessed. All samples exhibited increased CV and MDA contents during storage. The PV of peanuts increased continuously when stored at 15°C and 25°C, but the PV increased firstly and then decreased sharply when stored at 35°C. Storage significantly affected the contents of lipids, proteins, total sugars, and moisture in peanuts but did not influence the ash content. In general, the fatty acid and amino acid compositions changed significantly during storage at different temperatures. High temperatures lead to a high degree of lipid oxidation and nutrient loss. The results above of this study can provide a theoretical basis for the actual storage and preservation of peanuts.