Premium
Estimating the long memory granger causality effect with a spectrum estimator
Author(s) -
Chen WenDen
Publication year - 2006
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.981
Subject(s) - granger causality , estimator , spurious relationship , econometrics , causality (physics) , construct (python library) , order (exchange) , mathematics , economics , statistics , computer science , programming language , physics , finance , quantum mechanics
This paper discusses the Granger causality test by a spectrum estimator which allows the transfer function to have long memory properties. In traditional methodology the relationship among variables is usually assumed to be short memory or contemporaneous. Hence, we have to make sure they are of the same integrated order, else there might be a spurious regression problem. In practice, not all the variables are fractionally co‐integrated in the economic model. They may have the same random resources, but under a different integrated order. This paper focuses on how to capture the long memory Granger causality effect in the transfer function. This does not necessarily assume the variables are of the same fractional integrated order. Moreover, by the transfer function we construct an estimator to test the long memory effect with the Granger causality sense. Copyright © 2006 John Wiley & Sons, Ltd.