z-logo
Premium
Bias‐corrected bootstrap prediction regions for vector autoregression
Author(s) -
Kim Jae H.
Publication year - 2004
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.908
Subject(s) - autoregressive model , estimator , vector autoregression , monte carlo method , statistics , econometrics , mathematics
Abstract This paper examines small sample properties of alternative bias‐corrected bootstrap prediction regions for the vector autoregressive (VAR) model. Bias‐corrected bootstrap prediction regions are constructed by combining bias‐correction of VAR parameter estimators with the bootstrap procedure. The backward VAR model is used to bootstrap VAR forecasts conditionally on past observations. Bootstrap prediction regions based on asymptotic bias‐correction are compared with those based on bootstrap bias‐correction. Monte Carlo simulation results indicate that bootstrap prediction regions based on asymptotic bias‐correction show better small sample properties than those based on bootstrap bias‐correction for nearly all cases considered. The former provide accurate coverage properties in most cases, while the latter over‐estimate the future uncertainty. Overall, the percentile‐ t bootstrap prediction region based on asymptotic bias‐correction is found to provide highly desirable small sample properties, outperforming its alternatives in nearly all cases. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here