z-logo
Premium
Subset threshold autoregression
Author(s) -
So Mike K. P.,
Chen Cathy W. S.
Publication year - 2003
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.859
Subject(s) - autoregressive model , computer science , markov chain , markov chain monte carlo , lag , econometrics , threshold model , monte carlo method , mathematical optimization , mathematics , statistics , machine learning , computer network
We develop in this paper an efficient way to select the best subset threshold autoregressive model. The proposed method uses a stochastic search idea. Differing from most conventional approaches, our method does not require us to fix the delay or the threshold parameters in advance. By adopting the Markov chain Monte Carlo techniques, we can identify the best subset model from a very large of number of possible models, and at the same time estimate the unknown parameters. A simulation experiment shows that the method is very effective. In its application to the US unemployment rate, the stochastic search method successfully selects lag one as the time delay and five best models from more than 4000 choices. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom