z-logo
Premium
Volatility forecasting for risk management
Author(s) -
Brooks Chris,
Persand Gita
Publication year - 2003
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.841
Subject(s) - econometrics , volatility (finance) , multivariate statistics , autoregressive conditional heteroskedasticity , risk management , computer science , mean squared error , economics , statistics , actuarial science , finance , mathematics
Abstract Recent research has suggested that forecast evaluation on the basis of standard statistical loss functions could prefer models which are sub‐optimal when used in a practical setting. This paper explores a number of statistical models for predicting the daily volatility of several key UK financial time series. The out‐of‐sample forecasting performance of various linear and GARCH‐type models of volatility are compared with forecasts derived from a multivariate approach. The forecasts are evaluated using traditional metrics, such as mean squared error, and also by how adequately they perform in a modern risk management setting. We find that the relative accuracies of the various methods are highly sensitive to the measure used to evaluate them. Such results have implications for any econometric time series forecasts which are subsequently employed in financial decision making. Copyright © 2002 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here