Premium
Guesstimation
Author(s) -
Charemza Wojciech W.
Publication year - 2002
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.832
Subject(s) - disequilibrium , econometrics , computer science , econometric model , series (stratigraphy) , cointegration , monte carlo method , economics , mathematics , statistics , medicine , paleontology , biology , ophthalmology
Abstract Macroeconomic model builders attempting to construct forecasting models frequently face constraints of data scarcity in terms of short time series of data, and also of parameter non‐constancy and underspecification. Hence, a realistic alternative is often to guess rather than to estimate parameters of such models. This paper concentrates on repetitive guessing (drawing) parameters from iteratively changing distributions, with the straightforward objective function being that of minimization of squares of ex‐post prediction errors, weighted by penalty weights and subject to a learning process. The examples are those of a Monte Carlo analysis of a regression problem and of a dynamic disequilibrium model. It is also an example of an empirical econometric model of the Polish economy. Copyright © 2002 John Wiley & Sons, Ltd.