z-logo
Premium
Modeling of frequency containment reserve prices with econometrics and artificial intelligence
Author(s) -
Kraft Emil,
Keles Dogan,
Fichtner Wolf
Publication year - 2020
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2693
Subject(s) - autoregressive model , artificial neural network , econometrics , computer science , econometric model , economics , artificial intelligence
The forecasting of prices for electricity balancing reserve power can essentially improve the trading positions of market participants in competitive auctions. Having identified a lack of literature related to forecasting balancing reserve prices, we deploy approaches originating from econometrics and artificial intelligence and set up a forecasting framework based on autoregressive and exogenous factors. We use SARIMAX models as well as neural networks with different structures and forecast based on a rolling one‐step forecast with reestimation of the models. It turns out that the naive forecast performs reasonably well but is outperformed by the more advanced models. In addition, neural network approaches outperform the econometric approach in terms of forecast quality, whereas for the further use of the generated models the econometric approach has advantages in terms of explaining price drivers. For the present application, more advanced configurations of the neural networks are not able to further improve the forecasting performance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here