z-logo
Premium
Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects
Author(s) -
Wang Lu,
Ma Feng,
Liu Guoshan
Publication year - 2020
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2668
Subject(s) - econometrics , volatility (finance) , autoregressive conditional heteroskedasticity , economics , heteroscedasticity , extreme value theory , stock (firearms) , autoregressive model , stock market , mathematics , statistics , geography , archaeology , context (archaeology)
This paper introduces a novel generalized autoregressive conditional heteroskedasticity–mixed data sampling–extreme shocks (GARCH‐MIDAS‐ES) model for stock volatility to examine whether the importance of extreme shocks changes in different time ranges. Based on different combinations of the short‐ and long‐term effects caused by extreme events, we extend the standard GARCH‐MIDAS model to characterize the different responses of the stock market for short‐ and long‐term horizons, separately or in combination. The unique timespan of nearly 100 years of the Dow Jones Industrial Average (DJIA) daily returns allows us to understand the stock market volatility under extreme shocks from a historical perspective. The in‐sample empirical results clearly show that the DJIA stock volatility is best fitted to the GARCH‐MIDAS‐SLES model by including the short‐ and long‐term impacts of extreme shocks for all forecasting horizons. The out‐of‐sample results and robustness tests emphasize the significance of decomposing the effect of extreme shocks into short‐ and long‐term effects to improve the accuracy of the DJIA volatility forecasts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here