z-logo
Premium
Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria
Author(s) -
Farooq Umar,
Qamar Muhammad Ali Jibran
Publication year - 2019
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2588
Subject(s) - feature selection , computer science , data mining , financial ratio , financial distress , decision tree , artificial intelligence , econometrics , machine learning , finance , mathematics , economics , financial system
This research proposes a prediction model of multistage financial distress (MSFD) after considering contextual and methodological issues regarding sampling, feature and model selection criteria. Financial distress is defined as a three‐stage process showing different nature and intensity of financial problems. It is argued that applied definition of distress is independent of legal framework and its predictability would provide more practical solutions. The final sample is selected after industry adjustments and oversampling the data. A wrapper subset data mining approach is applied to extract the most relevant features from financial statement and stock market indicators. An ensemble approach using a combination of DTNB (decision table and naïve base hybrid model), LMT (logistic model tree) and A2DE (alternative N dependence estimator) Bayesian models is used to develop the final prediction model. The performance of all the models is evaluated using a 10‐fold cross‐validation method. Results showed that the proposed model predicted MSFD with 84.06% accuracy. This accuracy increased to 89.57% when a 33.33% cut‐off value was considered. Hence the proposed model is accurate and reliable to identify the true nature and intensity of financial problems regardless of the contextual legal framework.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here