z-logo
Premium
A Bayesian structural model for predicting algal blooms
Author(s) -
Sun Xinyu,
Liu Tao,
Wang Jiayin
Publication year - 2019
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2583
Subject(s) - algal bloom , probit model , bayesian probability , phytoplankton , econometrics , environmental science , computer science , ecology , mathematics , artificial intelligence , biology , nutrient
A Bayesian structural model with two components is proposed to forecast the occurrence of algal blooms, multivariate mean‐reverting diffusion process (MMRD), and a binary probit model with latent Markov regime‐switching process (BPMRS). The model has three features: (a) forecast of the occurrence probability of algal bloom is directly based on oceanographic parameters, not the forecasting of special indicators in traditional approaches, such as phytoplankton or chlorophyll‐a; (b) augmentation of daily oceanographic parameters from the data collected every 2 weeks is based on MMRD. The proposed method solves the problem of unavailability of daily oceanographic parameters in practice; (c) BPMRS captures the unobservable factors which affect algal bloom occurrence and therefore improve forecast accuracy. We use panel data collected in Tolo Harbour, Hong Kong, to validate the model. The model demonstrates good forecasting for out‐of‐sample rolling forecasts, especially for algal bloom appearing for a longer period, which severely damages fisheries and the marine environment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here