z-logo
Premium
Measuring large‐scale market responses and forecasting aggregated sales: Regression for sparse high‐dimensional data
Author(s) -
Terui Nobuhiko,
Li Yinxing
Publication year - 2019
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2574
Subject(s) - curse of dimensionality , computer science , context (archaeology) , factor regression model , regression analysis , econometrics , regression , sample (material) , data mining , artificial intelligence , statistics , machine learning , mathematics , paleontology , polynomial regression , chemistry , chromatography , biology , proper linear model
In this article, we propose a regression model for sparse high‐dimensional data from aggregated store‐level sales data. The modeling procedure includes two sub‐models of topic model and hierarchical factor regressions. These are applied in sequence to accommodate high dimensionality and sparseness and facilitate managerial interpretation. First, the topic model is applied to aggregated data to decompose the daily aggregated sales volume of a product into sub‐sales for several topics by allocating each unit sale (“word” in text analysis) in a day (“document”) into a topic based on joint‐purchase information. This stage reduces the dimensionality of data inside topics because the topic distribution is nonuniform and product sales are mostly allocated into smaller numbers of topics. Next, the market response regression model for the topic is estimated from information about items in the same topic. The hierarchical factor regression model we introduce, based on canonical correlation analysis for original high‐dimensional sample spaces, further reduces the dimensionality within topics. Feature selection is then performed on the basis of the credible interval of the parameters' posterior density. Empirical results show that (i) our model allows managerial implications from topic‐wise market responses according to the particular context, and (ii) it performs better than do conventional category regressions in both in‐sample and out‐of‐sample forecasts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here