Premium
Forecasting in long horizons using smoothed direct forecast
Author(s) -
Baek Yaein
Publication year - 2019
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2572
Subject(s) - econometrics , regression , iterated function , consensus forecast , ridge , horizon , series (stratigraphy) , economics , computer science , mathematics , statistics , geology , mathematical analysis , paleontology , geometry
This paper constructs a forecast method that obtains long‐horizon forecasts with improved performance through modification of the direct forecast approach. Direct forecasts are more robust to model misspecification compared to iterated forecasts, which makes them preferable in long horizons. However, direct forecast estimates tend to have jagged shapes across horizons. Our forecast method aims to “smooth out” erratic estimates across horizons while maintaining the robust aspect of direct forecasts through ridge regression, which is a restricted regression on the first differences of regression coefficients. The forecasts are compared to the conventional iterated and direct forecasts in two empirical applications: real oil prices and US macroeconomic series. In both applications, our method shows improvement over direct forecasts.