z-logo
Premium
Adaptive learning from model space
Author(s) -
Prüser Jan
Publication year - 2019
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2549
Subject(s) - computer science , exploit , inflation (cosmology) , econometrics , space (punctuation) , relevance (law) , machine learning , mathematics , physics , computer security , theoretical physics , political science , law , operating system
Dynamic model averaging (DMA) is used extensively for the purpose of economic forecasting. This study extends the framework of DMA by introducing adaptive learning from model space. In the conventional DMA framework all models are estimated independently and hence the information of the other models is left unexploited. In order to exploit the information in the estimation of the individual time‐varying parameter models, this paper proposes not only to average over the forecasts but, in addition, also to dynamically average over the time‐varying parameters. This is done by approximating the mixture of individual posteriors with a single posterior, which is then used in the upcoming period as the prior for each of the individual models. The relevance of this extension is illustrated in three empirical examples involving forecasting US inflation, US consumption expenditures, and forecasting of five major US exchange rate returns. In all applications adaptive learning from model space delivers improvements in out‐of‐sample forecasting performance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here