z-logo
Premium
Modeling and forecasting aggregate stock market volatility in unstable environments using mixture innovation regressions
Author(s) -
jad Nima
Publication year - 2017
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2466
Subject(s) - econometrics , autoregressive model , volatility (finance) , bayesian probability , conditional variance , stochastic volatility , state space representation , statistics , realized variance , regression , bayesian inference , autoregressive conditional heteroskedasticity , economics , mathematics , algorithm
We perform Bayesian model averaging across different regressions selected from a set of predictors that includes lags of realized volatility, financial and macroeconomic variables. In our model average, we entertain different channels of instability by either incorporating breaks in the regression coefficients of each individual model within our model average, breaks in the conditional error variance, or both. Changes in these parameters are driven by mixture distributions for state innovations (MIA) of linear Gaussian state‐space models. This framework allows us to compare models that assume small and frequent as well as models that assume large but rare changes in the conditional mean and variance parameters. Results using S&P 500 monthly and quarterly realized volatility data from 1960 to 2014 suggest that Bayesian model averaging in combination with breaks in the regression coefficients and the error variance through MIA dynamics generates statistically significantly more accurate forecasts than the benchmark autoregressive model. However, compared to a MIA autoregression with breaks in the regression coefficients and the error variance, we fail to provide any drastic improvements.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here