z-logo
Premium
Multicategory Purchase Incidence Models for Partitions of Product Categories
Author(s) -
Hruschka Harald
Publication year - 2017
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2428
Subject(s) - product (mathematics) , mathematics , econometrics , computer science , statistics , geometry
We analyze multicategory purchases of households by means of heterogeneous multivariate probit models that relate to partitions formed from a total of 25 product categories. We investigate both prior and post hoc partitions. We search model structures by a stochastic algorithm and estimate models by Markov chain Monte Carlo simulation. The best model in terms of cross‐validated log‐likelihood refers to a post hoc partition with two groups; the second‐best model considers all categories as one group. Among prior partitions with at least two category groups a five‐group model performs best. Effects on average basket value differ for the model with five prior category groups from those for the best‐performing model in 40% and 24% of the investigated categories for features and displays, respectively. In addition, the model with five prior category groups also underestimates total sales revenue across all categories by about 28%. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here