Premium
Treed Avalanche Forecasting: Mitigating Avalanche Danger Utilizing Bayesian Additive Regression Trees
Author(s) -
Blattenberger Gail,
Fowles Richard
Publication year - 2017
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2421
Subject(s) - bayesian probability , computer science , bayesian inference , environmental science , meteorology , closing (real estate) , statistics , geography , mathematics , artificial intelligence , business , finance
Little Cottonwood Canyon Highway is a dead‐end, two‐lane road leading to Utah's Alta and Snowbird ski resorts. It is the only road access to these resorts and is heavily traveled during the ski season. Professional avalanche forecasters monitor this road throughout the ski season in order to make road closure decisions in the face of avalanche danger. Forecasters at the Utah Department of Transportation (UDOT) avalanche guard station at Alta have maintained an extensive daily winter database on explanatory variables relating to avalanche prediction. Whether or not an avalanche crosses the road is modeled in this paper via Bayesian additive tree methods. Utilizing daily winter data from 1995 to 2011, results show that using Bayesian tree analysis outperforms traditional statistical methods in terms of realized misclassification costs that take into consideration asymmetric losses arising from two types of error. Closing the road when an avalanche does not occur is an error harmful to resort owners, and not closing the road when one does may result in injury or death. Copyright © 2016 John Wiley & Sons, Ltd.