z-logo
Premium
Forecasting Ability of a Periodic Component Extracted from Large‐Cap Index Time Series
Author(s) -
O'Shea Michael J.
Publication year - 2017
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2413
Subject(s) - series (stratigraphy) , component (thermodynamics) , time series , index (typography) , econometrics , computer science , mathematics , statistics , geology , physics , paleontology , world wide web , thermodynamics
We develop a method to extract periodic variations in a time series that are hidden in large non‐periodic and stochastic variations. This method relies on folding the time series many times and allows direct visualization of a hidden periodic component without resorting to any fitting procedure. Applying this method to several large‐cap stock time series in Europe, Japan and the USA yields a component with periodicity of 1 year. Out‐of‐sample tests on these large‐cap time series indicate that this periodic component is able to forecast long‐term (decade) behavior for large‐cap time series. Copyright © 2016 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom