Premium
Realized Volatility Forecast of Stock Index Under Structural Breaks
Author(s) -
Yang Ke,
Chen Langnan,
Tian Fengping
Publication year - 2015
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2318
Subject(s) - econometrics , volatility (finance) , stock market index , realized variance , stock exchange , stock (firearms) , parametric statistics , composite index , statistics , economics , mathematics , computer science , stock market , finance , engineering , mechanical engineering , paleontology , composite indicator , horse , biology
We investigate the realized volatility forecast of stock indices under the structural breaks. We utilize a pure multiple mean break model to identify the possibility of structural breaks in the daily realized volatility series by employing the intraday high‐frequency data of the Shanghai Stock Exchange Composite Index and the five sectoral stock indices in Chinese stock markets for the period 4 January 2000 to 30 December 2011. We then conduct both in‐sample tests and out‐of‐sample forecasts to examine the effects of structural breaks on the performance of ARFIMAX‐FIGARCH models for the realized volatility forecast by utilizing a variety of estimation window sizes designed to accommodate potential structural breaks. The results of the in‐sample tests show that there are multiple breaks in all realized volatility series. The results of the out‐of‐sample point forecasts indicate that the combination forecasts with time‐varying weights across individual forecast models estimated with different estimation windows perform well. In particular, nonlinear combination forecasts with the weights chosen based on a non‐parametric kernel regression and linear combination forecasts with the weights chosen based on the non‐negative restricted least squares and Schwarz information criterion appear to be the most accurate methods in point forecasting for realized volatility under structural breaks. We also conduct an interval forecast of the realized volatility for the combination approaches, and find that the interval forecast for nonlinear combination approaches with the weights chosen according to a non‐parametric kernel regression performs best among the competing models. Copyright © 2014 John Wiley & Sons, Ltd.