z-logo
Premium
How Predictable Are Equity Covariance Matrices? Evidence from High‐Frequency Data for Four Markets
Author(s) -
Buckle Mike,
Chen Jing,
Williams Julian
Publication year - 2014
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2310
Subject(s) - econometrics , covariance , wishart distribution , covariance matrix , estimation of covariance matrices , economics , covariance function , vector autoregression , covariance intersection , equity (law) , mathematics , statistics , multivariate statistics , political science , law
Most pricing and hedging models rely on the long‐run temporal stability of a sample covariance matrix. Using a large dataset of equity prices from four countries—the USA, UK, Japan and Germany—we test the stability of realized sample covariance matrices using two complementary approaches: a standard covariance equality test and a novel matrix loss function approach. Our results present a pessimistic outlook for equilibrium models that require the covariance of assets returns to mean revert in the long run. We find that, while a daily first‐order Wishart autoregression is the best covariance matrix‐generating candidate, this non‐mean‐reverting process cannot capture all of the time series variation in the covariance‐generating process. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom