z-logo
Premium
Weighted Empirical Likelihood Estimator for Vector Multiplicative Error Model
Author(s) -
Ding Hao,
Lam Kaipui
Publication year - 2013
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.2257
Subject(s) - outlier , estimator , multiplicative function , volatility (finance) , robustness (evolution) , econometrics , cluster analysis , generalized method of moments , mixture model , mathematics , maximum likelihood , computer science , statistics , mathematical analysis , biochemistry , chemistry , gene
The vector multiplicative error model (vector MEM) is capable of analyzing and forecasting multidimensional non‐negative valued processes. Usually its parameters are estimated by generalized method of moments (GMM) and maximum likelihood (ML) methods. However, the estimations could be heavily affected by outliers. To overcome this problem, in this paper an alternative approach, the weighted empirical likelihood (WEL) method, is proposed. This method uses moment conditions as constraints and the outliers are detected automatically by performing a k ‐means clustering on Oja depth values of innovations. The performance of WEL is evaluated against those of GMM and ML methods through extensive simulations, in which three different kinds of additive outliers are considered. Moreover, the robustness of WEL is demonstrated by comparing the volatility forecasts of the three methods on 10‐minute returns of the S&P 500 index. The results from both the simulations and the S&P 500 volatility forecasts have shown preferences in using the WEL method. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here