z-logo
Premium
Forecasting time‐varying covariance with a robust Bayesian threshold model
Author(s) -
Wu ChihChiang,
Lee Jack C.
Publication year - 2011
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.1183
Subject(s) - covariance , bayesian probability , econometrics , computer science , economics , artificial intelligence , statistics , mathematics
This paper proposes a robust multivariate threshold vector autoregressive model with generalized autoregressive conditional heteroskedasticities and dynamic conditional correlations to describe conditional mean, volatility and correlation asymmetries in financial markets. In addition, the threshold variable for regime switching is formulated as a weighted average of endogenous variables to eliminate excessively subjective belief in the threshold variable decision and to serve as the proxy in deciding which market should be the price leader. The estimation is performed using Markov chain Monte Carlo methods. Furthermore, several meaningful criteria are introduced to assess the forecasting performance in the conditional covariance matrix. The proposed methodology is illustrated using daily S&P500 futures and spot prices. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here