Premium
Mortality forecasting using neural networks and an application to cause‐specific data for insurance purposes
Author(s) -
Shah Paras,
Guez Allon
Publication year - 2009
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.1111
Subject(s) - life expectancy , artificial neural network , computer science , econometrics , actuarial science , artificial intelligence , statistics , economics , mathematics , medicine , environmental health , population
Mortality forecasting is important for life insurance policies, as well as in other areas. Current techniques for forecasting mortality in the USA involve the use of the Lee–Carter model, which is primarily used without regard to cause. A method for forecasting morality is proposed which involves the use of neural networks. A comparative analysis is done between the Lee–Carter model, linear trend and the proposed method. The results confirm that the use of neural networks performs better than the Lee–Carter and linear trend model within 5% error. Furthermore, mortality rates and life expectancy were formulated for individuals with a specific cause based on prevalence data. The rates are broken down further into respective stages (cancer) based on the individual's diagnosis. Therefore, this approach allows life expectancy to be calculated based on an individual's state of health. Copyright © 2008 John Wiley & Sons, Ltd.