Premium
A semiparametric method for predicting bankruptcy
Author(s) -
Hwang RueyChing,
Cheng K. F.,
Lee Jack C.
Publication year - 2007
Publication title -
journal of forecasting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.543
H-Index - 59
eISSN - 1099-131X
pISSN - 0277-6693
DOI - 10.1002/for.1027
Subject(s) - estimator , econometrics , bankruptcy prediction , bankruptcy , semiparametric regression , logistic regression , computer science , logit , semiparametric model , statistics , mathematics , economics , finance
Bankruptcy prediction methods based on a semiparametric logit model are proposed for simple random (prospective) and case–control (choice‐based; retrospective) data. The unknown parameters and prediction probabilities in the model are estimated by the local likelihood approach, and the resulting estimators are analyzed through their asymptotic biases and variances. The semiparametric bankruptcy prediction methods using these two types of data are shown to be essentially equivalent. Thus our proposed prediction model can be directly applied to data sampled from the two important designs. One real data example and simulations confirm that our prediction method is more powerful than alternatives, in the sense of yielding smaller out‐of‐sample error rates. Copyright © 2007 John Wiley & Sons, Ltd.