z-logo
Premium
Further experiences with computing non‐hydrostatic free‐surface flows involving water waves
Author(s) -
Zijlema Marcel,
Stelling Guus S.
Publication year - 2005
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.821
Subject(s) - discretization , finite volume method , free surface , mathematics , euler equations , robustness (evolution) , projection method , hydrostatic equilibrium , boundary value problem , computational fluid dynamics , finite element method , hydrostatic pressure , mathematical analysis , geometry , mechanics , physics , biochemistry , chemistry , quantum mechanics , gene , thermodynamics , grating
Abstract A semi‐implicit, staggered finite volume technique for non‐hydrostatic, free‐surface flow governed by the incompressible Euler equations is presented that has a proper balance between accuracy, robustness and computing time. The procedure is intended to be used for predicting wave propagation in coastal areas. The splitting of the pressure into hydrostatic and non‐hydrostatic components is utilized. To ease the task of discretization and to enhance the accuracy of the scheme, a vertical boundary‐fitted co‐ordinate system is employed, permitting more resolution near the bottom as well as near the free surface. The issue of the implementation of boundary conditions is addressed. As recently proposed by the present authors, the Keller‐box scheme for accurate approximation of frequency wave dispersion requiring a limited vertical resolution is incorporated. The both locally and globally mass conserved solution is achieved with the aid of a projection method in the discrete sense. An efficient preconditioned Krylov subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric matrix is treated. Some numerical experiments to show the accuracy, robustness and efficiency of the proposed method are presented. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here