z-logo
Premium
Numerical analysis of moving interfaces using a level set method coupled with adaptive mesh refinement
Author(s) -
Kohno Haruhiko,
Tanahashi Takahiko
Publication year - 2004
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.715
Subject(s) - level set method , adaptive mesh refinement , discretization , finite element method , computation , level set (data structures) , mesh generation , mathematics , smoothing , algorithm , numerical diffusion , computer science , mathematical optimization , mathematical analysis , mechanics , computational science , segmentation , artificial intelligence , image segmentation , thermodynamics , statistics , physics
A novel numerical scheme is developed by coupling the level set method with the adaptive mesh refinement in order to analyse moving interfaces economically and accurately. The finite element method (FEM) is used to discretize the governing equations with the generalized simplified marker and cell (GSMAC) scheme, and the cubic interpolated pseudo‐particle (CIP) method is applied to the reinitialization of the level set function. The present adaptive mesh refinement is implemented in the quadrangular grid systems and easily embedded in the FEM‐based algorithm. For the judgement on renewal of mesh, the level set function is adopted as an indicator, and the threshold is set at the boundary of the smoothing band. With this criterion, the variation of physical properties and the jump quantity on the free surface can be calculated accurately enough, while the computation cost is largely reduced as a whole. In order to prove the validity of the present scheme, two‐dimensional numerical simulation is carried out in collapse of a water column, oscillation and movement of a drop under zero gravity. As a result, its effectiveness and usefulness are clearly shown qualitatively and quantitatively. Among them, the movement of a drop due to the Marangoni effect is first simulated efficiently with the present scheme. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here