z-logo
Premium
Solution of the shallow‐water equations using an adaptive moving mesh method
Author(s) -
Tang Huazhong
Publication year - 2004
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.681
Subject(s) - polygon mesh , computation , shallow water equations , grid , interpolation (computer graphics) , mathematics , algorithm , adaptive mesh refinement , mesh generation , test case , mathematical optimization , geometry , computer science , finite element method , mathematical analysis , computational science , physics , computer graphics (images) , animation , thermodynamics , statistics , regression analysis
Abstract This paper extends an adaptive moving mesh method to multi‐dimensional shallow water equations (SWE) with source terms. The algorithm is composed of two independent parts: the SWEs evolution and the mesh redistribution. The first part is a high‐resolution kinetic flux‐vector splitting (KFVS) method combined with the surface gradient method for initial data reconstruction, and the second part is based on an iteration procedure. In each iteration, meshes are first redistributed by a variational principle and then the underlying numerical solutions are updated by a conservative‐interpolation formula on the resulting new mesh. Several test problems in one‐ and two‐dimensions with a general geometry are computed using the proposed moving mesh algorithm. The computations demonstrate that the algorithm is efficient for solving problems with bore waves and their interactions. The solutions with higher resolution can be obtained by using a KFVS scheme for the SWEs with a much smaller number of grid points than the uniform mesh approach, although we do not treat technically the bed slope source terms in order to balance the source terms and flux gradients. Copyright © 2004 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here