Premium
Employment of the second‐moment turbulence closure on arbitrary unstructured grids
Author(s) -
Basara B.
Publication year - 2004
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.646
Subject(s) - turbulence , reynolds stress , reynolds number , cylinder , mechanics , closure (psychology) , computational fluid dynamics , reynolds stress equation model , mathematics , moment (physics) , flow (mathematics) , interpolation (computer graphics) , finite volume method , reynolds averaged navier–stokes equations , geometry , classical mechanics , physics , turbulence kinetic energy , k omega turbulence model , motion (physics) , economics , market economy
The paper presents a finite‐volume calculation procedure using a second‐moment turbulence closure. The proposed method is based on a collocated variable arrangement and especially adopted for unstructured grids consisting of ‘polyhedral’ calculation volumes. An inclusion of 23k in the pressure is analysed and the impact of such an approach on the employment of the constant static pressure boundary is addressed. It is shown that this approach allows a removal of a standard but cumbersome velocity–pressure –Reynolds stress coupling procedure known as an extension of Rhie‐Chow method (AIAA J. 1983; 21 : 1525–1532) for the Reynolds stresses. A novel wall treatment for the Reynolds‐stress equations and ‘polyhedral’ calculation volumes is presented. Important issues related to treatments of diffusion terms in momentum and Reynolds‐stress equations are also discussed and a new approach is proposed. Special interpolation practices implemented in a deferred‐correction fashion and related to all equations, are explained in detail. Computational results are compared with available experimental data for four very different applications: the flow in a two‐dimensional 180o turned U‐bend, the vortex shedding flow around a square cylinder, the flow around Ahmed Body and in‐cylinder engine flow. Additionally, the performance of the methodology is assessed by applying it to different computational grids. For all test cases, predictions with the second‐moment closure are compared to those of the k–εmodel. The second‐moment turbulence closure always achieves closer agreement with the measurements. A moderate increase in computing time is required for the calculations with the second‐moment closure. Copyright © 2004 John Wiley & Sons, Ltd.