Premium
3D free‐surface flow computation using a RANSE/Fourier–Kochin coupling
Author(s) -
Guillerm PierreEmmanuel,
Alessandrini Bertrand
Publication year - 2003
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.611
Subject(s) - free surface , potential flow , velocity potential , fourier transform , mechanics , flow (mathematics) , hull , external flow , computational fluid dynamics , solver , boundary value problem , geometry , computation , coupling (piping) , mathematics , mathematical analysis , stokes flow , reynolds number , physics , geology , mathematical optimization , engineering , algorithm , mechanical engineering , turbulence , oceanography
A coupling method for numerical calculations of steady free‐surface flows around a body is presented. The fluid domain in the neighbourhood of the hull is divided into two overlapping zones. Viscous effects are taken in account near the hull using Reynolds‐averaged Navier–Stokes equations (RANSE), whereas potential flow provides the flow away from the hull. In the internal domain, RANSE are solved by a fully coupled velocity, pressure and free‐surface elevation method. In the external domain, potential‐flow theory with linearized free‐surface condition is used to provide boundary conditions to the RANSE solver. The Fourier–Kochin method based on the Fourier–Kochin formulation, which defines the velocity field in a potential‐flow region in terms of the velocity distribution at a boundary surface, is used for that purpose. Moreover, the free‐surface Green function satisfying this linearized free‐surface condition is used. Calculations have been successfully performed for steady ship‐waves past a serie 60 and then have demonstrated abilities of the present coupling algorithm. Copyright © 2003 John Wiley & Sons, Ltd.