z-logo
Premium
Finite transformation rigid motion mesh morpher; A grid deformation approach
Author(s) -
Liatsikouras Athanasios G.,
Fougeron Gabriel,
Eleftheriou George S.,
Pierrot Guillaume
Publication year - 2021
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4912
Subject(s) - deformation (meteorology) , mesh generation , grid , transformation (genetics) , motion (physics) , finite element method , geometry , classical mechanics , computer science , mathematics , mechanics , geology , physics , structural engineering , engineering , biochemistry , oceanography , chemistry , gene
Summary In any shape optimization framework and specifically in the context of computational fluid dynamics, a robust and reliable grid deformation tool is necessary to undertake the adaptation of the computational mesh to the updated boundaries at each optimization cycle. Grid deformation has its share of challenges, namely, to maintain high mesh quality (avoid distorted elements and tangles) even when dealing with extreme deformations. In this work a novel grid deformation algorithm, the finite transformation rigid motion mesh morpher (FT‐R3M) is proposed. FT‐R3M is essentially a mesh‐free grid deformation approach, since it does not require any inertial quantities and it gracefully propagates the movement of the boundaries (surface mesh) to the internal nodes of the mesh (volume mesh), by keeping the motion of its parts (referred to as stencils) as‐rigid‐as‐possible. It is an optimization‐based method, which means that the interior nodes of the computational mesh are displaced to minimize a distortion metric related to the elastic deformation energy, by favoring rigidity in critical directions, thus being able to handle mesh anisotropies very efficiently. Results are presented for three test cases; a rotated airfoil with a mesh appropriate for viscous flow; a simulation of a low Reynolds duct case; a beam.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here