z-logo
Premium
Solving the fully nonlinear weakly dispersive Serre equations for flows over dry beds
Author(s) -
Pitt Jordan P.A.,
Zoppou Christopher,
Roberts Stephen G.
Publication year - 2021
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4873
Subject(s) - bathymetry , finite volume method , finite element method , mathematics , nonlinear system , mathematical analysis , geometry , mechanics , geology , physics , oceanography , quantum mechanics , thermodynamics
We describe a numerical method for solving the Serre equations that can simulate flows over dry bathymetry. The method solves the Serre equations in conservation law form with a finite volume method. A finite element method is used to solve the auxiliary elliptic equation for the depth‐averaged horizontal velocity. The numerical method is validated against the lake at rest analytic solution, demonstrating that it is well‐balanced. Since there are currently no known nonstationary analytical solutions to the Serre equation that involve bathymetry, a nonstationary forced solution, involving bathymetry was developed. The method was further validated and its convergence rate established using the developed nonstationary forced solution containing the wetting and drying of bathymetry. Finally, the method is also validated against experimental results for the run‐up of a solitary wave on a sloped beach. The finite‐volume finite‐element approach to solving the Serre equation was found to be accurate and robust.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here