z-logo
Premium
Numerical simulation of vortical ideal fluid flow through curved channel
Author(s) -
Moshkin N. P.,
Mounnamprang P.
Publication year - 2003
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.487
Subject(s) - euler equations , vorticity , curvilinear coordinates , stream function , mathematics , boundary value problem , geometry , computational fluid dynamics , flow (mathematics) , mathematical analysis , vortex , mechanics , physics
Abstract A numerical algorithm to study the boundary‐value problem in which the governing equations are the steady Euler equations and the vorticity is given on the inflow parts of the domain boundary is developed. The Euler equations are implemented in terms of the stream function and vorticity. An irregular physical domain is transformed into a rectangle in the computational domain and the Euler equations are rewritten with respect to a curvilinear co‐ordinate system. The convergence of the finite‐difference equations to the exact solution is shown experimentally for the test problems by comparing the computational results with the exact solutions on the sequence of grids. To find the pressure from the known vorticity and stream function, the Euler equations are utilized in the Gromeka–Lamb form. The numerical algorithm is illustrated with several examples of steady flow through a two‐dimensional channel with curved walls. The analysis of calculations shows strong dependence of the pressure field on the vorticity given at the inflow parts of the boundary. Plots of the flow structure and isobars, for different geometries of channel and for different values of vorticity on entrance, are also presented. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here