Premium
A third‐order compact nonlinear scheme for compressible flow simulations
Author(s) -
Tian Zhuangzhuang,
Wang Guangxue,
Zhang Fan,
Zhang Huaibao
Publication year - 2020
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4831
Subject(s) - stencil , nonlinear system , aerodynamics , mach number , compressible flow , classification of discontinuities , numerical diffusion , dissipation , mathematics , reynolds number , mach reflection , shock (circulatory) , mechanics , compressibility , flow (mathematics) , mathematical analysis , physics , mach wave , turbulence , thermodynamics , medicine , computational science , quantum mechanics
Summary Reynolds‐averaged Navier‐Stokes simulations based on second‐order numerical methods are widely used by commercial codes and work as dominating tools for most industrial applications. They, however, suffer from limitations in accurate and reliable predictions of skin‐friction drag and aerodynamic heating, as well as in simulations of complex flows such as large‐scale separation and transition. A remedy for this is the development of high‐order schemes, by which numerically induced dissipation and dispersion errors of low‐order schemes can be effectively reduced. Weighted compact nonlinear schemes (WCNSs) are a family of high‐resolution nonlinear shock‐capturing methods. A stencil‐selection procedure is introduced in the proposed work with an aim to improve the nonlinear weight of the third‐order WCNS. By using the approximate dispersion relation analysis, it is demonstrated that the new scheme has reduced dissipation and dispersion errors, compared with WCNSs using two typical nonlinear weights. Improvements are also achieved by the new scheme in numerical tests such as the double Mach reflection problem and the Rayleigh‐Taylor instability simulation, which are characterized by strong shock discontinuities and rich small scales, respectively. The new scheme is therefore highly favored in the simulation of flow problems involving strong discontinuities and multiscales phenomena.