z-logo
Premium
A finite volume method for multicomponent gas transport in a porous fuel cell electrode
Author(s) -
Stockie John M.,
Promislow Keith,
Wetton Brian R.
Publication year - 2003
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.453
Subject(s) - finite volume method , porous medium , solver , mechanics , discretization , flow (mathematics) , partial differential equation , porosity , materials science , thermodynamics , mathematics , mathematical analysis , physics , mathematical optimization , composite material
We present a mathematical model for multicomponent gas transport in an anisotropic fuel cell electrode.The model couples the Maxwell–Stefan equations for multicomponent diffusion along with Darcy's law for flow in a porous medium. The equations are discretized using a finite volume approach with the method of lines, and the resulting non‐linear system of differential equations is integrated in time using a stiff ODE solver. Numerical simulations are performed to validate the model and to investigate the effect of various parameters on fuel cell performance. Copyright © 2003 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom