Premium
Depth‐integrated nonhydrostatic free‐surface flow modeling using weighted‐averaged equations
Author(s) -
CanteroChinchilla F.N.,
CastroOrgaz O.,
Khan A.A.
Publication year - 2018
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4481
Subject(s) - riemann solver , finite volume method , mathematics , shallow water equations , weighting , mathematical analysis , solver , flow (mathematics) , geometry , mechanics , mathematical optimization , physics , acoustics
Summary In this study, a depth‐integrated nonhydrostatic flow model is developed using the method of weighted residuals. Using a unit weighting function, depth‐integrated Reynolds‐averaged Navier‐Stokes equations are obtained. Prescribing polynomial variations for the field variables in the vertical direction, a set of perturbation parameters remains undetermined. The model is closed generating a set of weighted‐averaged equations using a suitable weighting function. The resulting depth‐integrated nonhydrostatic model is solved with a semi‐implicit finite‐volume finite‐difference scheme. The explicit part of the model is a Godunov‐type finite‐volume scheme that uses the Harten‐Lax‐van Leer‐contact wave approximate Riemann solver to determine the nonhydrostatic depth‐averaged velocity field. The implicit part of the model is solved using a Newton‐Raphson algorithm to incorporate the effects of the pressure field in the solution. The model is applied with good results to a set of problems of coastal and river engineering, including steady flow over fixed bedforms, solitary wave propagation, solitary wave run‐up, linear frequency dispersion, propagation of sinusoidal waves over a submerged bar, and dam‐break flood waves.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom