Premium
Momentum‐based approximation of incompressible multiphase fluid flows
Author(s) -
Cappanera Loïc,
Guermond JeanLuc,
Herreman Wietze,
Nore Caroline
Publication year - 2017
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4467
Subject(s) - compressibility , mathematics , navier–stokes equations , entropy (arrow of time) , computational fluid dynamics , mechanics , mathematical optimization , physics , thermodynamics
Summary We introduce a time stepping technique using the momentum as dependent variable to solve incompressible multiphase problems. The main advantage of this approach is that the mass matrix is time‐independent making this technique suitable for spectral methods. A level set method is applied to reconstruct the fluid properties such as density. We also introduce a stabilization method using an entropy‐viscosity technique and a compression technique to limit the flattening of the level set function. We extend our algorithm to immiscible conducting fluids by coupling the incompressible Navier‐Stokes and the Maxwell equations. We validate the proposed algorithm against analytical and manufactured solutions. Results on test cases such as Newton's bucket problem and a variation thereof are provided. Surface tension effects are tested on benchmark problems involving bubbles. A numerical simulation of a phenomenon related to the industrial production of aluminium is presented at the end of the paper.