Premium
A rotating reference frame‐based lattice Boltzmann flux solver for simulation of turbomachinery flows
Author(s) -
Zhou Di,
Lu Zhiliang,
Guo Tongqing
Publication year - 2016
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.4281
Subject(s) - lattice boltzmann methods , solver , turbomachinery , finite volume method , inviscid flow , flux limiter , euler equations , physics , euler's formula , rotating reference frame , mathematics , computational fluid dynamics , partial differential equation , mechanics , classical mechanics , statistical physics , mathematical analysis , mathematical optimization
Summary In this paper, the newly developed lattice Boltzmann flux solver (LBFS) is developed into a version in the rotating frame of reference for simulation of turbomachinery flows. LBFS is a finite volume solver for the solution of macroscopic governing differential equations. Unlike conventional upwind or Godunov‐type flux solvers which are constructed by considering the mathematical properties of Euler equations, it evaluates numerical fluxes at the cell interface by reconstructing local solution of lattice Boltzmann equation (LBE). In other words, the numerical fluxes are physically determined rather than by some mathematical approximation. The LBE is herein expressed in a relative frame of reference in order to correctly recover the macroscopic equations, which is also the basis of LBFS. To solve the LBE, an appropriate lattice Boltzmann model needs to be established in advance. This includes both the determinations of the discrete velocity model and its associated equilibrium distribution functions. Particularly, a simple and effective D1Q4 model is adopted, and the equilibrium distribution functions could be efficiently obtained by using the direct method. The present LBFS is validated by several inviscid and viscous test cases. The numerical results demonstrate that it could be well applied to typical and complex turbomachinery flows with favorable accuracy. It is also shown that LBFS has a delicate dissipation mechanism and is thus free of some artificial fixes, which are often needed in conventional schemes. Copyright © 2016 John Wiley & Sons, Ltd.