Premium
Numerical simulations of wave interactions with vertical wave barriers using the SPH method
Author(s) -
Ni Xingye,
Feng W. B.,
Wu Di
Publication year - 2014
Publication title -
international journal for numerical methods in fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.938
H-Index - 112
eISSN - 1097-0363
pISSN - 0271-2091
DOI - 10.1002/fld.3933
Subject(s) - mechanics , computational fluid dynamics , free surface , curvature , boundary (topology) , boundary value problem , breakwater , geology , physics , geotechnical engineering , geometry , mathematics , mathematical analysis
SUMMARY This paper focuses on the fluid boundary separation problem of the conventional dynamic solid boundary treatment (DSBT) and proposes a modified DSBT (MDSBT). Classic 2D free dam break flows and 3D dam break flows against a rectangular box are used to assess the performance of this MDSBT in free surface flow and violent fluid–structure interaction, respectively. Another test, water column oscillations in a U‐tube, is specially designed to reveal the applicability of dealing with two types of particular boundaries: the wet–dry solid boundary and the large‐curvature solid boundary. A comparison between the numerical results and the experimental data shows that the MDSBT is capable of eliminating the fluid boundary separation, improving the accuracy of the solid boundary pressure calculations and preventing the unphysical penetration of fluid particles. Using a 2D SPH numerical wave tank with MDSBT, the interactions between regular waves and a simplified vertical wave barrier are simulated. The numerical results reveal that the maximum horizontal force occurs at the endpoint of the vertical board, and with the enlargement of the relative submerged board length, the maximum moment grows linearly; furthermore, the relative average mass transportation under the breakwater initially increases to 11.14 per wave strike but is later reduced. The numerical simulation of a full‐scale 3D wave barrier with two vertical boards shows that the wave and structure interactions in the practical project are far more complicated than in the simplified 2D models. The SPH model using the MDSBT is capable of providing a reference for engineering designs. Copyright © 2014 John Wiley & Sons, Ltd.